Category Archives: water

Ocean thermal energy conversion gets one step closer to commercial reality

otecUPDATE: An interesting announcement from Lockheed Martin this morning. The military contractor says it has signed a “memorandum agreement” with real-estate developer Reignwood Group, founded and run by Thai-Chinese businessman Yan Bin, the second-richest man in Beijing. What have they agreed to do? Lockheed says it will design a 10-megawatt ocean thermal energy conversion (OTEC) plant, which will supply 100 per cent of the power needs of a planned “net-zero” green resort being built by Reignwood. “The agreement could lay the foundation for the development of several additional OTEC power plants ranging in size from 10 to 100 megawatts, for a potential multi-billion dollar value,” according to Lockheed in a press release.

This is exciting for two reasons. One, it’s very cool technology, and being an energy geek I love hearing this kind of news. Two, there’s huge potential here for the ocean to supply emission-free electricity around the world. Lockheed has been working on this technology since the 1970s. An OTEC power plant basically uses heat exchangers to extract heat out of the warmer upper ocean layers and create steam from a working fluid with a low boiling temperature, such as ammonia. As I wrote in my book Mad Like Tesla, “The steam would drive a turbine that generates electricity. Cold water from deeper layers would then be used to condense the ammonia back into fluid, at which point the cycle would be repeated.” In my book, I quoted Ted Johnson, director of alternative energy development at Lockheed, who is clearly optimistic about what the technology could offer. “I dream of thousands of floating OTEC ships roaming the seas of the world, providing an inexhaustible supply of clean energy and fuel and water for all people of the world.”

While Lockheed has been working on this for four decades, one of the first in-depth discussions of the concept came from Nikola Tesla, who at the age of 75 outlined how such a plant might be built in the December 1931 issue of Everyday Science and Mechanics journal. Tesla spent considerable time trying devising a way to improve the efficiencies of such a power plant, but he determined that it was too great an engineering challenge at the time. “I have studied this plan of power production from all angles and have devised apparatus for bringing down all losses to what I might call the irreducible minimum and still I find the performance too small to enable successful competition with the present methods,” he wrote, though still expressing hope that new methods would eventually make it possible to economically tap the thermal energy in oceans.

Lockheed is trying to demonstrate that the day has come. “Constructing a sea-based, multi-megawatt pilot OTEC power plant for Reignwood Group is the final step in making it an economic option to meet growing needs for clean, reliable energy,” said Dan Heller, vice-president of new ventures for Lockheed’s mission systems and training group. Lockheed said the technology is “well-suited” to island and coastal communities where — because of transportation logistics — energy prices tend to be high and there is great dependency on oil for power generation. “Unlike other renewable energy technologies, this power is also base load, meaning it can be produced consistently 24 hours a day, 365 days a year,” said Lockheed. “A commercial-scale OTEC plant will have the capability to power a small city. The energy can also be used for the cultivation of other crucial resources such as clean drinking water and hydrogen for applications such as electric vehicles.”

Continues Lockheed: “Once the proposed plant is developed and operational, the two companies plan to use the knowledge gained to improve the design of the additional commercial-scale plants, to be built over the next 10 years. Each 100-megawatt OTEC facility could produce the same amount of energy in a year as 1.3 million barrels of oil, decrease carbon emissions by half a million tons and provide a domestic energy source that is sustainable, reliable and secure. With oil trading near $100 a barrel, the fuel-savings from one plant could top $130 million per year.”

There is one point of confusion, however. Lockheed says this planned OTEC project — at 10 megawatts — will be the largest ever built, but I was under the impression it had designed or was in the process of designing a 10MW plant off the coast of Hawaii. I’ve e-mailed Lockheed asking for clarification on this and will update my post when I get an answer. For more background on this concept check out this story from a few months back by the folks at Greentech Media.

(UPDATE: I received a response from Lockheed spokesman Scott Lusk on the company’s work in Hawaii. Here’s what he had to say: “While Hawaii is one of the main places where Lockheed Martin has conducted research and evaluation around the OTEC technology, to date there have been no contracts awarded for commercial-scale OTEC development in the state. Lockheed Martin has tested the heat exchanger technology, a critical component in the OTEC plant design, at the NELHA research facility in Hawaii. In addition, Hawaii is one of several locations where Lockheed Martin has conducted feasibility studies. Other locations include Guam and Japan.”)

Clean Break column in Toronto Star ends a 10-year run…

photoIt was a trip to Iceland in June 2003, just months after the birth of my first daughter, that the immense need for and potential of clean energy first landed on my radar. The Toronto Star agreed to send me there so I could write about Iceland’s efforts to transition to a hydrogen economy. I toured several of the country’s geothermal and hydroelectric facilities. I rode on hydrogen fuel cell buses. I swam in the Blue Lagoon. I spoke with some of the leading academics and engineers in the world working on the hydrogen puzzle. I came back inspired, hungry to learn more — not just about fuel cells and hydrogen, but about this whole emerging area of clean technology, or “cleantech.” It helped that Canadian fuel cell pioneers Ballard Power and Hydrogenics had already captured my interest, but once I looked beyond the “hype about hydrogen” I saw a great diversity of clean technologies at various stages of development. Further boosting my enthusiasm was Nick Parker, founder of the Cleantech Group and the man who coined the term “cleantech.” It was about that time that I first met Nick at a venture capital conference in Toronto. I had covered the technology and telecom scene for five years and was getting bored. The market had tanked. No longer was it interesting to write about faster routers and fatter broadband services. I was more drawn to the optical engineers who left telecom behind and decided to use their skills to boost the potential of solar PV technology and LEDs. Nick and the handful of companies he brought to the venture capital conference only had a small piece of the floor, but they were the most fascinating to cover. I was hooked.

Within just a couple of months after my trip to Iceland, I decided to transition my weekly high-tech column at the Toronto Star into a clean technology column. It began as a bi-weekly effort, but by the following year my transition was complete — Clean Break was a weekly column devoted to cleantech, and a first of its kind in North American for a major daily newspaper. This blog soon followed, one of the first cleantech blogs to hit the blogosphere. Parker’s Cleantech Group recognized this in 2005 by selecting me for the Cleantech Pioneer award. What Nick liked about the Clean Break column is that it was in the business section of the newspaper, which conveyed the idea that most of the technologies I was writing about weren’t destined to be money-losing propositions but were either competitive today or had the potential to be competitive; that tackling climate and other environmental issues through efficiency and using carbon-free technologies was a way to boost productivity and global competitiveness. Readers also liked the emphasis on solutions, as opposed to dwelling on environmental problems. I didn’t see myself as an environmental reporter, at least not of the traditional sort — that is, only investigating and exposing bad apples, and only telling readers how much things sucked. That was just too depressing. I liked highlighting innovation that was going to help get us out of the environmental mess we had created, and even better, help boost revenues and lower costs for companies and governments. I wanted to put less emphasis on environmental compliance (a pure cost) and more emphasis on the embrace of “clean” technologies because it was simply good for business. I thank the Toronto Star for letting me go in this direction, or at least not preventing me from doing so.

Much has changed in the 10 years that have followed. That whole hydrogen thing didn’t turn out as planned. Plug-in vehicles, hardly talked about a decade ago, have taken over and remarkably all of the top auto manufacturers now have pure electric or hybrid-electric models on the market. Sales haven’t been a strong as predicted, but the fact there are tens of thousands of plug-in vehicles on the roads and thousands of high-speed charging stations installed is a dramatic accomplishment in my view. Same goes for solar and wind technologies. Less than 600 megawatts of solar capacity were installed in 2003. That figure has surpassed 30,000 megawatts, meaning the market has grown 50-fold over the past decade, and we’ll see another 10-fold expansion by 2020. Currently there are about 96,000 megawatts of total solar capacity installed worldwide, a figure that’s expected to reach 330,000 megawatts in seven years. In other words, since starting my Clean Break column solar has gone mainstream — a combination of plunging prices and progressive government policies. The wind industry, which had an installed capacity of about 39,000 megawatts in 2003, has grown to have a total capacity that now stands at 283,000 megawatts. These are huge numbers. Last year, an astonishing $269 billion was invested in clean energy infrastructure. In 2010, investments in renewable energy exceeded investments in fossil fuelled power plants for the first time, a major global milestone. Venture capital in cleantech, depending on how you define it, jumped from about $1 billion to over $8 billion from 2005 to 2011 (it’s now around $6 billion). The market for cleantech is, generally speaking, a trillion-dollar global opportunity.

Media coverage of the industry — new and traditional — has also changed. In 2005 my blog was among a handful of blogs consistently covering the cleantech space, and my column was unique in North American, at least for a mainstream daily newspaper. Now, as I wrote in my book Mad Like Tesla, “I am but one small voice in a sea of dedicated news sites, columns, blogs, Facebook pages, and Twitterers all covering different angles of this clean energy revolution and advocating for a faster transition away from fossil fuels. We may complain that the transition is going too slowly — it can never move fast enough — but looking back it’s amazing we have come this far so quickly.” As coverage of the sector increased, my own writings became increasingly regional and local. Most of my Clean Break columns for the past few years have focused on my home province of Ontario or home city of Toronto. I’ve most enjoyed writing about Canadian or Ontario-based clean technology startups or innovators trying to raise the bar on efficiency and lower environmental footprints. My columns have covered LEDs, solar power, wind power, demand-response, green chemistry, smart grid innovation, water technologies, geothermal, biofuels (with a big focus on algae), electric vehicles, carbon capture and storage, nuclear, wave and tidal power, biogas, waste reduction, energy storage, advanced materials… you name it. I have learned so much, met so many wonderful and smart people, made new friends and played my own little part in helping Canadian companies get attention locally and globally. It has been tremendously satisfying.

Why am I writing all of this now? Well, because this July would have been the 10-year anniversary for my Clean Break column in the Toronto Star. Also, just before I went to Costa Rica earlier this month for vacation, I got a call telling me that my column had been cancelled. I can’t say it was entirely unexpected. When I left my full-time staff writing gig at the Star in 2010 to write Mad Like Tesla, the paper’s business editor at the time agreed on a handshake to let me keep writing the column. Three editors have come and gone from the business section since then and during each transition the axe was expected to come. It didn’t, and frankly, I’m amazed I made it this far. It’s been a great run. The fact is, the newspaper industry is going through a painful transition and there’s no indication this is temporary. In fact, the pain indicates something that may be terminal. The Star recently announced it was outsourcing its pagination and copy editing functions to save costs and that 55 jobs would be cut. Sections across the paper have been asked to slash budgets, and the axe falls easily on freelance columns. This is an unfortunate sign of the times. That my column was discontinued is also a sign of the times. Clean energy may be the future and climate change is the biggest threat to our existence, but that didn’t stop the New York Times from recently dismantling its own environmental reporting team and cancelling its popular green blog. This is both the knee-jerk reaction of an industry that’s suffering, and the reason why this industry is suffering — in my humble opinion.

To be fair to the Star, it did recently hire a global environmental reporter and global science and technology reporter. This is great news. Change is good, and people will get fresh coverage and viewpoints. Let’s hope they stay committed to these beats and give the stories that come out of them the priority and placement they deserve. Me, I’m having a blast as editor of Corporate Knights magazine, where I have been for nearly two years, and I hope to spend the next few years building this publication. We’re doing great things and insightful research — not just in cleantech, but around a number of issues where business and sustainability intersect. I encourage all my readers to sign up for Corporate Knights’ digital subscription, which you can get through iTunes by downloading our app in the App Store (We’re also available on Kindle through Amazon.com, and soon coming to the Android marketplace). Besides, I needed a break from the column and had been considering new directions for it for some time. Its Canada/Ontario/Toronto focus was appropriate for a paper like the Toronto Star, but I want to broaden the message and the audience. Over the coming months I will be looking at a national or North American media platform through which to revive the column, in partnership likely with Corporate Knights. In the meantime, I’ll continue to use this blog to highlight new technologies, emerging issues, breaking news, and whatever else tickles my fancy. The Clean Break brand is here to stay.

Finally, if you were a regular reader of my Clean Break column in the Star, thank you very much for tuning in. Many hundreds, possibly thousands, have reached out to me over the years to convey their appreciation or dislike of the column — fortunately it’s been more of the former. Sometimes people just wanted to exchange ideas. I can’t tell you how heart-warming it is to get an e-mail from a teacher who’s using my column as material for the classroom, or a call from a student who wants to interview me for a class project, or getting Tim Horton’s gift certificates in the mail from an anonymous person thanking me for doing what I’m doing, or getting a call from the founder of a startup who got venture capital funding because of an article I wrote, or having a politician tell me that my coverage of an issue had an impact on policy or legislation. Without readers — even the ones who call you an idiot, and there have been many — there’s no point in writing.

Unfortunately, the Toronto Star would not allow me to do a final farewell column to notify my readers that this is the end of the line, for now. Some of you might have noticed it was no longer being published. But most won’t notice, and I expect this will hold true for many of my colleagues still word-tapping at the Star. Columns come and go, and mine is no different. It would have been nice, however, to thank my Star readers more directly, rather than through the more limited audience that this blog attracts.

Ontario municipalities now empowered to offer PAPER, PACE programs to boost energy, water conservation

Maybe it’s just a coincidence, or maybe it’s clever politicking, but Kathleen Wynne made a smart move last month.

Two weeks before resigning her cabinet post and announcing her intentions to run for leadership of the Ontario Liberal Party, the MPP for Don Valley West signed amendments to two pieces of legislation that could potentially fill a gaping hole in the province’s troubled energy policy.

Exercising her authority as minister of municipal affairs and housing, Wynne approved changes to the Municipal Act and City of Toronto Act that empower all municipalities in Ontario to take the lead on energy and water conservation programs.

Specifically, municipalities such as Toronto can now use a financing tool called a local improvement charge (LIC) to help property owners finance changes to their homes that are aimed at reducing energy or water consumption.

This is important, as the McGuinty government has neglected to follow through on the conservation promises of its own Green Energy Act, despite the fact that improving energy efficiency is the lowest cost and fastest way to save energy and reduce the environmental impacts of electricity generation.

Previously, local improvement charges could only be used to finance neighbourhood infrastructure projects. If a town or city replaced a sewer pipe or repaved a road, it could spread part of the cost among those property owners that stand to benefit. This would be visible as a special charge added to property tax bills.

The amendments, first proposed back in May, now make it possible for municipalities to apply the LIC model to energy or water efficiency projects taken on by individual property owners.

So what’s the big deal? As I wrote back in June, the amendments mean that municipalities can leverage their ability to raise cheap capital through bond issues.

They can then turn around and offer low-interest financing to property owners looking to insulate their homes, add energy-efficient windows, install smart thermostats, and upgrade to high-efficiency furnaces, air conditioners and water heaters.

Property owners could then pay back the loan over 10 or more years through their property taxes, with the idea being that annual payments would be less than annual energy or water savings. Another bonus is that existing municipal billing systems can be leveraged.

There are many names for this kind of program. When focused on energy conservation, programs are often called Property Assessed Payments for Energy Retrofits, or PAPER. When designed to encourage installation of renewable energy, such as rooftop solar, it’s called Property Assessed Clean Energy, or PACE. The legislative changes in Ontario allow for both types of programs to be created.

“I would say that over 50 municipalities are so far interested in this model,” said Sonja Persram, president of Toronto-based Sustainable Alternatives Consulting Inc., who has been a major champion of the proposed legislative changes. “Of those, a fairly large number — both large and small — are keen to move forward.”

Ontario is now the third jurisdiction in Canada — behind Yukon and Nova Scotia — to embrace LICs as a method for stimulating efficiency investments by easing the upfront capital burden that often make such investments unpalatable for property owners.

Brian Kelly, manager of sustainability for the Region of Durham, said what amounts to a minor regulatory change on Wynne’s part opens the door for municipalities to stimulate major residential retrofit activity, create local jobs, and at the same time help consumers do what they need to do to lower energy and water costs.

There’s little, if any, political or financial risk to the province. But the impact is potentially huge, in terms of lowering emissions, reducing pressure on utility infrastructure, and spurring economic activity.

Toronto councillor Mike Layton, who is pushing the city to launch a pilot project as soon as possible, called the approved amendments an “exciting” development. “Staff will be bringing a pilot project in coming months and I hope we can find money to fund it,” said Layton. “It would be great if we can start getting some real pickup on this.”

The Toronto Real Estate Board, the Toronto Board of Trade, as well as several labour organizations, NGOs and business leaders, have so far backed Layton’s efforts.

As far as seeing the model expanded country-wide, Natural Resources Canada considers the approach a complement or alternative to incentive-based programs that overcomes two barriers: Upfront access to capital and a practical way to pay back loans — i.e. through municipal or local utility billing infrastructure.

“These mechanisms are key to market transformation, helping homeowners move away from reliance on government subsidies to a more market-based arrangement,” according to the ministry.

The federal EcoEnergy home retrofit program, underpinned by nearly $200 million in subsidies, only tapped into 6 per cent of Canada’s housing stock.

“This is potentially a huge spur for the Ontario economy,” said Persram, who expects to see plenty of municipal collaboration on program development. “This allows municipalities to take control of their own destiny.”

If the approach is successful, the Liberal government — perhaps one day Wynne — can take credit for the heavy lifting it has essentially offloaded.

All it took was a signature.

Tyler Hamilton, author of Mad Like Tesla, writes weekly about green energy and clean technologies.

Lady Gaga tweets are not enough… movie/rock stars should unite for climate awareness, action

Back in the mid-1980s dozens of high-profile music artists from the United Kingdom, United States and Canada got together in their respective countries to raise awareness and stimulate discussion of famine in Ethiopia.

Bono, David Bowie and Sting helped lead Band Aid, the U.K. supergroup that created the song Do They Know It’s Christmas? This was followed by USA for Africa’s We Are The World, which included Michael Jackson, Bruce Springsteen and Bob Dylan.

Canada’s contribution was Northern Lights’ Tears Are Not Enough, featuring heavyweights Bryan Adams, Neil Young, Anne Murray and Geddy Lee.

In all, the three songs resulted in the sale of more than 35 million copies worldwide and shined a bright light on an issue that had received little attention by the mainstream media, politicians and the general public.

I couldn’t help but recall the impact of these songs, and the phenomenon of celebrity influence, while listening earlier this week to Stanford University professor Mark Jacobson, who spoke at an event at the University of Toronto co-hosted by several community groups, including the Citizen’s Climate Lobby and Post Carbon Toronto.

I’ll make the link between star power and Jacobson later in this column, but first some background on the good professor.

Jacobson is a bit of a rock star himself in academic circles, at least when it comes to another problem that’s putting millions – potentially billions – of lives at risk. He has spent his career trying to understand the global impacts of air pollution and climate change, as well as how to quickly and responsibly transition from our dependence on fossil fuels to a world powered by renewable energy.

“Air pollution alone kills 2.5 to 3 million people at least a year worldwide,” he told those gathered to attend his Toronto lecture. He then rattled off a list of other problems associated with fossil fuels—rising global temperature and sea level, record Arctic ice loss, more frequent extreme weather events, and volatile energy prices, to name a few.

“These are drastic problems that require drastic solutions, and we think they need to be addressed immediately. We can’t wait 20 or 30 years, which is why we’ve really got to focus on technologies that exist today, that can be implemented for the most part right away, and that can be implemented at large scale.”

Jacobson caught people’s attention three years ago with his co-authored article A Plan To Power 100 Percent of the Planet With Renewables, which was the cover story for a 2009 issue of Scientific American.

Many roll their eyes at the suggestion that renewables can do it all for us, but one by one Jacobson’s article dispelled many myths about green power and convincingly argued that wind, water and sun could do the heavy lifting if we had the collective will power to make it happen.

It analyzed the impacts of each type of “clean” energy source independently, including land and water footprint, the materials required to make it, how much pollution would be created during its full lifecycle, and overall contribution to global warming.

Wind turbines, various forms of solar technology, hydropower and geothermal plants, and to a lesser extent wave and tidal energy, got top marks. Nuclear, coal with carbon capture and storage, natural gas and biomass didn’t make the cut.

In the area of transportation, he favoured electric or hydrogen-powered vehicles over those that used compressed natural gas or biofuels such as ethanol.

“Why not natural gas?” he said last week. “Because it releases at least 50 to 70 times more carbon and air pollution than wind energy per kilowatt-hour generated… It’s a bridge fuel to nowhere.”

Jacobson has calculated that a world where all industry and transportation is powered by renewables would require installation of 3.8 million wind turbines, 1.7 billion residential and commercial rooftop solar systems, about 90,000 solar plants each 300 megawatts in size, 5,350 geothermal plants 100 megawatts in size, and about 1.5 million wave and tidal devices.

It seems like a lot, but it’s all relative. Consider the estimated 20 to 30 million abandoned oil and gas wells worldwide, or the many millions of smokestacks that dot our city and urban landscapes. Considers that the planet is wrapped in a mesh of more than two million kilometres of pipeline infrastructure, enough to stretch to the moon and back nearly three times.

His renewables plan, he pointed out, would take up less than 1 per cent of land space on the planet.

Now comes the star power. Jacobson has teamed up with the greenest, most powerful ally one could imagine: the Incredible Hulk. Well, actually actor Mark Ruffalo, who played the Hulk in The Avengers movie.

They’re leading an initiative called The Solutions Project, which is trying to bring together high profile scientists, business people, investors, movie makers and Hollywood stars in an effort to drive home the message that 100-per cent renewable energy is not only doable, but should be done.

Their first effort, to be announced shortly, will be to develop a comprehensive green plan for New York State, followed by other states and eventually other countries.

Actors Leonardo DiCaprio and Scarlett Johansson are lending their star power to the cause, along with documentary movie director Josh Fox, celebrity entrepreneur Elon Musk, and philanthropist Eileen Rockefeller.

Jacobson and Ruffalo, who co-authored an article for Huffington Post that appeared in June, said their goal is to “inspire millions to take part in an energy revolution.”

“Today, with social media and the reach of pop culture, we can educate people and achieve what was unthinkable five years ago,” they wrote. “It is up to us to grab hold of our potential and change our world for the better.”

Individual tweets from Lady Gaga and Justin Bieber are not going to change things. Having celebrities join forces with scientists and policymakers against a global threat like climate change, as they did for African famine in the mid-80s, just might.

For this reason, Jacobson is on the right track.

Tyler Hamilton, author of Mad Like Tesla, writes weekly about green energy and clean technologies.

When talking power production, we can’t ignore the water factor

It’s often forgotten when talking about energy production that environmental impacts stretch far beyond air pollution and emissions of heat-trapping greenhouse gases.

Less discussed, particularly in the context of electricity generation, is the dependence and impact on fresh water resources that are vital to other industries and ecosystems. If more frequent and intense droughts are to become the new normal in this era of human-induced climate change, it’s an issue that shouldn’t be overlooked by policy makers.

Don Roberts, who leads the renewable energy and clean technology investment team at CIBC, once put it this way: “If energy is scarce, water is scarcer.”

Synapse Energy Economics, a research consultancy based on Cambridge, Mass., put out a report this week drawing attention to the thirst profile and water impacts of various forms of electricity generation — namely those based on coal, natural gas, nuclear, biomass, solar and wind.

The report — called “The Hidden Costs of Electricity Generation” — also looked at climate change impacts, air pollution, subsidies, land use and development risks. For the purposes of this column the focus will be on water.

So who’s the thirstiest of them all?

It’s not wind or solar photovoltaic. The study found that only 45 to 85 gallons of water are consumed for every megawatt-hour of electricity that’s produced from a wind turbine, and that’s including the water used for manufacturing the turbine, transporting it, and constructing wind farms.

For perspective, a megawatt-hour is how much electricity the average Ontario home consumes in a month.

Solar photovoltaic electricity production doesn’t really need water, aside from negligible amounts required to occasionally clean the panels. But taking into account things like mining of photovoltaic materials and manufacturing, this type of solar generation uses six times the volume of water consumed by wind — anywhere from 225 to 520 gallons per megawatt-hour.

After wind and solar come the real water hogs — power plants that use fuels such as uranium, coal, gas and biomass to create enough heat to produce steam. The steam is then used to spin a turbine that generates electricity.

All thermal power plants need water to for cooling steam, and they need a lot. Natural gas-powered plants consume anywhere from 50 to 180 gallons per megawatt-hour depending on the approach.

Coal and biomass plants gulp 300 to 480 gallons, while nuclear plants consume up to 720 gallons for the same amount of electricity production.

(The word “consume” is used here to mean that water is used up and not returned to where it came from. Nuclear plants in Ontario, for example, withdraw tens of thousands of gallons per megawatt-hour but most goes back to the lake at a slightly higher temperature. What doesn’t is lost to evaporation.)

And remember, all of this is just cooling. The numbers rise dramatically when lifecycle costs are taken into account.

Consider that growing enough biomass — such as corn or switchgrass — to produce a megawatt-hour can consume as much as 100,000 gallons of water. Coal mining and pollution from coal plants result in widespread surface and groundwater contamination. Building and operating massive concrete structures like a nuclear plant can consume up to 6,900 gallons per megawatt-hour.

Now we’re talking big numbers. As we increasingly come to depend on shale gas to fuel our gas-fired power plants, it should be known that between two and 10 million gallons of water are required to drill and hydraulically “frack” a single shale-gas well, and that much of that water becomes contaminated with toxic chemicals.

It all adds up when one considers there are tens of thousands of shale-gas wells in some stage of development across North America.

“Such huge water withdrawals raise serious concerns about the impacts on ecosystems and drinking water supplies, especially in areas under drought conditions, areas with low seasonal flow, locations with already stressed water supplies, or locations with waters that have sensitive aquatic communities,” according to the Synapse Energy study.

The report rightly challenges the notion that low-carbon energy sources should automatically be labelled “clean” energy. It’s not just about carbon, as much as the nuclear and “clean coal” proponents would have us believe.

Water, land use, radioactivity, safety, pollution and impact on biodiversity must all be seriously weighed for their short- and long-term impacts. “What the public requires is an honest account of the true costs of electric generation technologies in as accurate a form as possible,” the study asserts.

Nuclear uses up 90 times more water than wind power. Shouldn’t that be important?

Said Grant Smith, senior energy analyst at the Civil Society Institute, the Washington, D.C.-based think tank that commissioned the Synapse study: “the government and energy industries are literally flying blind.”

Tyler Hamilton, author of Mad Like Tesla, writes weekly about green energy and clean technologies.