Category Archives: fuel cells

Tracking the transition to a low-carbon economy: $5.2 trillion invested since 2007, according to report

gts_1.13_web_mediumEthical Media Markets calls itself an independent publisher of research reports and other information related to the emerging green economy, and every six months it comes out with an annual and mid-year update to its Green Transition Scoreboard. The scoreboard has been tracking private investments in the green economy globally since 2007. In its August 2013 report, it highlighted what it is calling a “dramatic mid-year surge” in cumulative global investment since 2007, rising to $5.2 trillion by August from $4.1 trillion in February. And remember, this is private investment — i.e. it excludes investment in government projects.

The jump, according to the report, is partially driven by the following trends: “…the write-down of fossil fuel assets; the inevitable wave of nuclear plants due to be retired; the exposing of hypothetical forecasts of 100 years of shale gas; and the decline of large, centralized electricity generation.”

Nearly $2.4 trillion has gone into renewable energy investments, making it the largest investment theme out of the $5.2 trillion total. Energy efficiency investments represent $1.33 trillion, followed by green construction at $880 billion, corporate R&D at $378 billion and remaining “cleantech” at $235 billion. Ethical Markets Media says it comes up with these numbers by scanning reports from Cleantech Group, Bloomberg, Yahoo Finance, Reuters and many UN and other international studies and individual company reports.

The report has a narrow definition of “green” investment. It excludes funds invested in nuclear power, carbon capture and sequestration, and biofuels, with some limited exceptions. Even so, it projects the $10 trillion investment mark will easily be reached by 2020 and, alongside this increase, we will see a transition away from fossil fuels.

Says the report: “Increasingly, worldwide regulations are leaving fossil fuel investments as stranded assets with pension funds heeding the call to divest from fossil fuels and invest in green technologies. Dutch Rabobank will now refuse loans to companies involved in tar sands and shale gas, citing the long-term financial and environmental risks are too large. In July 2013, Storebrand, a major Norwegian pension fund advisor, excluded from its Energy Sector all 13 coal producers and the 6 oil companies with the highest exposure to tar sands ‘to reduce Storebrand’s exposure to fossil fuels and to secure long term, stable returns for our clients…'”

I don’t entirely agree with some of the conclusions this report reaches, but it adds another interesting perspective to the energy transition that is clearly taking place globally. Big dollars are being spent on cleaner forms of energy. That a transition is happening there is little doubt. The question now is: how fast, and can we accelerate it?

Catalyst breakthrough *could* change economics of hydrogen energy storage

icon_hydrogenI was in New York City doing a photo shoot for Corporate Knights when news broke that a duo of University of Calgary researchers had come up with a new, very inexpensive catalyst — i.e. rust — for generating hydrogen gas from water. Can’t believe I missed it, actually, because it received wide coverage — from MIT Technology Review to Canada’s Globe and Mail and CBC Online. Still, for those like me who missed it, here’s a quick rundown of why this is potentially important and what it means for the so-called hydrogen economy. I have no doubt that this has caught the attention of many big-name players in the hydrogen and broader energy sector since the research was published online in the journal Science.

According to the press release out of FireWater Fuel, the company spun out of this research, what has been discovered is a “breakthrough method of fabricating electrocatalysts made of inexpensive, non-toxic, and abundant resources, that facilitate the production of clean hydrogen from water.” An electrocatalyst, I should say, is simply a material that causes a chemical reaction to take place when an electrical current is introduced. Conventional catalysts used to split water into hydrogen and oxygen come from rare and expensive metals such as platinum, which costs more than $1,700 an ounce and is highly volatile price-wise. Pre-2008, it had reached over $2,000 per ounce. I remember a conversation I had with Ballard Power president John Sheridan back then. When the recession hit and platinum prices plunged to $800, Sheridan said Ballard locked in a large order knowing full well the price would rise again — and it has. Platinum prices matter to fuel cell developers. When they’re high, they can represent up to one-third of the total cost of a proton-exchange membrane fuel cell. Water electrolysis units used to produce hydrogen are basically fuel cells that operate in reverse, meaning they also rely greatly on platinum.

(It should be said that platinum also plays a big role with internal combustion engine vehicles, as every catalytic converter in a vehicle (required by law) contains platinum. However, ICE vehicles generally contain less than one-tenth the amount of platinum as a fuel cell-powered vehicle.)

The need to eliminate our dependency on expensive platinum and other rare-earth metals is why the U of C breakthrough is potentially game-changing. If you can eliminate the need for platinum and replace it with a less exotic, more abundant and — most importantly — dramatically cheaper catalyst, then the dream of using hydrogen as an energy storage medium becomes that much more real. Indeed, FireWater Fuel claims it can make a competitive catalyst from “Earth-adundant” materials such as iron oxide — i.e. rust. We certainly have a lot of rust, so that’s promising. Cobalt and nickel are other plentiful compound metals that are used. Essentially, the researchers use light at low temperatures to produce mixed metal-oxide films for the electrodes that are used in the electrolysis process.  FireWater says its second-generation prototype “already outperforms the industry benchmark despite costing only a fraction of the price and consisting of environmentally benign materials.” By “fraction” they mean nearly 1,000 times cheaper. So far, the approach is more than 85 per cent efficient and the company is working to have its first commercial electrolyzer on the market by 2014, with a small home-scale unit possible by 2015.

The commercial units could, for example, be used to economically produce hydrogen from surplus, low-cost electricity (such as overnight wind energy production). That hydrogen could then be stored and used later to generate electricity (via fuel cell or combustion turbine) when the power is most needed, thereby smoothing out the variability of wind. It could also be paired with an off-grid wind farm in a remote area that wants to wean itself from diesel back-up generators. At home, a smaller unit could be used to produce hydrogen on demand from rooftop solar panels. If this becomes economical, it may remove a major barrier that has prevented fuel-cell vehicles from entering the market.

Perhaps. May. Could. Potentially. This would all be VERY cool if it came to fruition, but having reported on past announcements like this I will wait for more evidence of progress. This has to be proven at a scaled-up level, and there will certainly be many speed bumps and funding challenges along the way to commercialization. It’s also worth noting that this research isn’t entirely unique. There are many start-ups and research teams out there making breakthroughs in alternative catalysts for hydrogen production. Just type in “cheap + catalyst + hydrogen” in Google and you’ll see what I mean. One particular company, Georgia-based GridShift, claims it has developed a catalyst that uses no rare-earth materials and reduces catalyst costs by 97 per cent — i.e. catalysts at $60 an ounce versus $1,700 for platinum.

Back in 2010, when it emerged out of stealth mode, GridShift said it could produce hydrogen at a cost of $2.51 per kilogram, “effectively making hydrogen a more affordable alternative than gasoline at an equivalent cost of $2.70 per gallon of gasoline.” According to the company, “GridShift’s new method for hydrogen generation produces four times more hydrogen per electrode surface area than what is currently reported for commercial units today. This means that an electrolysis unit using the GridShift method would produce at least four times more fuel in the same-sized machine, or require a unit four times smaller than normal to make the same amount of hydrogen.” Three years later, there’s not much word from GridShift, even though it is backed by venture capitalist Vinod Khosla. Still, founder Robert Dopp keeps putting out studies.

So in a nutshell, I’m very excited about this University of Calgary research and hope FireWater Fuels can get to a finish line that others have so far failed to reach. It would truly put hydrogen back in the running as an energy storage medium for renewables and fuel-cell vehicles, with the added irony that it would originate from Calgary — the financial heartland of Canada’s oil sands industry.

Clean Break column in Toronto Star ends a 10-year run…

photoIt was a trip to Iceland in June 2003, just months after the birth of my first daughter, that the immense need for and potential of clean energy first landed on my radar. The Toronto Star agreed to send me there so I could write about Iceland’s efforts to transition to a hydrogen economy. I toured several of the country’s geothermal and hydroelectric facilities. I rode on hydrogen fuel cell buses. I swam in the Blue Lagoon. I spoke with some of the leading academics and engineers in the world working on the hydrogen puzzle. I came back inspired, hungry to learn more — not just about fuel cells and hydrogen, but about this whole emerging area of clean technology, or “cleantech.” It helped that Canadian fuel cell pioneers Ballard Power and Hydrogenics had already captured my interest, but once I looked beyond the “hype about hydrogen” I saw a great diversity of clean technologies at various stages of development. Further boosting my enthusiasm was Nick Parker, founder of the Cleantech Group and the man who coined the term “cleantech.” It was about that time that I first met Nick at a venture capital conference in Toronto. I had covered the technology and telecom scene for five years and was getting bored. The market had tanked. No longer was it interesting to write about faster routers and fatter broadband services. I was more drawn to the optical engineers who left telecom behind and decided to use their skills to boost the potential of solar PV technology and LEDs. Nick and the handful of companies he brought to the venture capital conference only had a small piece of the floor, but they were the most fascinating to cover. I was hooked.

Within just a couple of months after my trip to Iceland, I decided to transition my weekly high-tech column at the Toronto Star into a clean technology column. It began as a bi-weekly effort, but by the following year my transition was complete — Clean Break was a weekly column devoted to cleantech, and a first of its kind in North American for a major daily newspaper. This blog soon followed, one of the first cleantech blogs to hit the blogosphere. Parker’s Cleantech Group recognized this in 2005 by selecting me for the Cleantech Pioneer award. What Nick liked about the Clean Break column is that it was in the business section of the newspaper, which conveyed the idea that most of the technologies I was writing about weren’t destined to be money-losing propositions but were either competitive today or had the potential to be competitive; that tackling climate and other environmental issues through efficiency and using carbon-free technologies was a way to boost productivity and global competitiveness. Readers also liked the emphasis on solutions, as opposed to dwelling on environmental problems. I didn’t see myself as an environmental reporter, at least not of the traditional sort — that is, only investigating and exposing bad apples, and only telling readers how much things sucked. That was just too depressing. I liked highlighting innovation that was going to help get us out of the environmental mess we had created, and even better, help boost revenues and lower costs for companies and governments. I wanted to put less emphasis on environmental compliance (a pure cost) and more emphasis on the embrace of “clean” technologies because it was simply good for business. I thank the Toronto Star for letting me go in this direction, or at least not preventing me from doing so.

Much has changed in the 10 years that have followed. That whole hydrogen thing didn’t turn out as planned. Plug-in vehicles, hardly talked about a decade ago, have taken over and remarkably all of the top auto manufacturers now have pure electric or hybrid-electric models on the market. Sales haven’t been a strong as predicted, but the fact there are tens of thousands of plug-in vehicles on the roads and thousands of high-speed charging stations installed is a dramatic accomplishment in my view. Same goes for solar and wind technologies. Less than 600 megawatts of solar capacity were installed in 2003. That figure has surpassed 30,000 megawatts, meaning the market has grown 50-fold over the past decade, and we’ll see another 10-fold expansion by 2020. Currently there are about 96,000 megawatts of total solar capacity installed worldwide, a figure that’s expected to reach 330,000 megawatts in seven years. In other words, since starting my Clean Break column solar has gone mainstream — a combination of plunging prices and progressive government policies. The wind industry, which had an installed capacity of about 39,000 megawatts in 2003, has grown to have a total capacity that now stands at 283,000 megawatts. These are huge numbers. Last year, an astonishing $269 billion was invested in clean energy infrastructure. In 2010, investments in renewable energy exceeded investments in fossil fuelled power plants for the first time, a major global milestone. Venture capital in cleantech, depending on how you define it, jumped from about $1 billion to over $8 billion from 2005 to 2011 (it’s now around $6 billion). The market for cleantech is, generally speaking, a trillion-dollar global opportunity.

Media coverage of the industry — new and traditional — has also changed. In 2005 my blog was among a handful of blogs consistently covering the cleantech space, and my column was unique in North American, at least for a mainstream daily newspaper. Now, as I wrote in my book Mad Like Tesla, “I am but one small voice in a sea of dedicated news sites, columns, blogs, Facebook pages, and Twitterers all covering different angles of this clean energy revolution and advocating for a faster transition away from fossil fuels. We may complain that the transition is going too slowly — it can never move fast enough — but looking back it’s amazing we have come this far so quickly.” As coverage of the sector increased, my own writings became increasingly regional and local. Most of my Clean Break columns for the past few years have focused on my home province of Ontario or home city of Toronto. I’ve most enjoyed writing about Canadian or Ontario-based clean technology startups or innovators trying to raise the bar on efficiency and lower environmental footprints. My columns have covered LEDs, solar power, wind power, demand-response, green chemistry, smart grid innovation, water technologies, geothermal, biofuels (with a big focus on algae), electric vehicles, carbon capture and storage, nuclear, wave and tidal power, biogas, waste reduction, energy storage, advanced materials… you name it. I have learned so much, met so many wonderful and smart people, made new friends and played my own little part in helping Canadian companies get attention locally and globally. It has been tremendously satisfying.

Why am I writing all of this now? Well, because this July would have been the 10-year anniversary for my Clean Break column in the Toronto Star. Also, just before I went to Costa Rica earlier this month for vacation, I got a call telling me that my column had been cancelled. I can’t say it was entirely unexpected. When I left my full-time staff writing gig at the Star in 2010 to write Mad Like Tesla, the paper’s business editor at the time agreed on a handshake to let me keep writing the column. Three editors have come and gone from the business section since then and during each transition the axe was expected to come. It didn’t, and frankly, I’m amazed I made it this far. It’s been a great run. The fact is, the newspaper industry is going through a painful transition and there’s no indication this is temporary. In fact, the pain indicates something that may be terminal. The Star recently announced it was outsourcing its pagination and copy editing functions to save costs and that 55 jobs would be cut. Sections across the paper have been asked to slash budgets, and the axe falls easily on freelance columns. This is an unfortunate sign of the times. That my column was discontinued is also a sign of the times. Clean energy may be the future and climate change is the biggest threat to our existence, but that didn’t stop the New York Times from recently dismantling its own environmental reporting team and cancelling its popular green blog. This is both the knee-jerk reaction of an industry that’s suffering, and the reason why this industry is suffering — in my humble opinion.

To be fair to the Star, it did recently hire a global environmental reporter and global science and technology reporter. This is great news. Change is good, and people will get fresh coverage and viewpoints. Let’s hope they stay committed to these beats and give the stories that come out of them the priority and placement they deserve. Me, I’m having a blast as editor of Corporate Knights magazine, where I have been for nearly two years, and I hope to spend the next few years building this publication. We’re doing great things and insightful research — not just in cleantech, but around a number of issues where business and sustainability intersect. I encourage all my readers to sign up for Corporate Knights’ digital subscription, which you can get through iTunes by downloading our app in the App Store (We’re also available on Kindle through Amazon.com, and soon coming to the Android marketplace). Besides, I needed a break from the column and had been considering new directions for it for some time. Its Canada/Ontario/Toronto focus was appropriate for a paper like the Toronto Star, but I want to broaden the message and the audience. Over the coming months I will be looking at a national or North American media platform through which to revive the column, in partnership likely with Corporate Knights. In the meantime, I’ll continue to use this blog to highlight new technologies, emerging issues, breaking news, and whatever else tickles my fancy. The Clean Break brand is here to stay.

Finally, if you were a regular reader of my Clean Break column in the Star, thank you very much for tuning in. Many hundreds, possibly thousands, have reached out to me over the years to convey their appreciation or dislike of the column — fortunately it’s been more of the former. Sometimes people just wanted to exchange ideas. I can’t tell you how heart-warming it is to get an e-mail from a teacher who’s using my column as material for the classroom, or a call from a student who wants to interview me for a class project, or getting Tim Horton’s gift certificates in the mail from an anonymous person thanking me for doing what I’m doing, or getting a call from the founder of a startup who got venture capital funding because of an article I wrote, or having a politician tell me that my coverage of an issue had an impact on policy or legislation. Without readers — even the ones who call you an idiot, and there have been many — there’s no point in writing.

Unfortunately, the Toronto Star would not allow me to do a final farewell column to notify my readers that this is the end of the line, for now. Some of you might have noticed it was no longer being published. But most won’t notice, and I expect this will hold true for many of my colleagues still word-tapping at the Star. Columns come and go, and mine is no different. It would have been nice, however, to thank my Star readers more directly, rather than through the more limited audience that this blog attracts.

Enbridge makes another clean tech investment — this time in flywheel storage

temporalEnbridge Inc. is emerging as major corporate venturing partners in the Canadian cleantech scene. It has already acquired more than $3 billion in renewable energy assets — a combination of solar, wind, geothermal and run-of-river hydro. It has invested in concentrated solar PV manufacturer Morgan Solar and hydrogen tech firm Hydrogenics. It has pursued innovative waste-heat capture at its compressor stations in combination with fuel cell technology. Now, it is throwing its financial support behind flywheel storage innovator Temporal Power.

Temporal, based in Mississauga, Ontario, announced this week it has completed a $10 million Series B equity financing, with Enbridge Emerging Technology Inc. one of the lead investors along with Northwater Intellectual Property Fund (which was also lead investor in the company’s Series A financing in July 2011). Northwater Capital, it should be noted, is the money behind NRStor, a company with plans to develop Canada’s first energy storage park. NRStor, using Temporal Power flywheels, has already won a contract with Ontario’s Independent Electricity System Operator, which will see the flywheels being used to provide regulation services on the provincial grid. Annette Verschuren, former CEO of Home Depot Canada, is heading up the NRStor initiative.

Temporal Power describes its flywheel technology as a  “quantum leap forward” because of its capability of storing 50 times more energy than most flywheels and enabling a power output that is five times higher per unit than its nearest grid-scale competitor. “Using its proprietary flywheel energy storage technology, Temporal Power’s scalable power storage plants offer utilities and power generation companies the ability to deliver efficient and cost-effective fast response capabilities for balancing energy and improving power quality on the electrical grid,” the company said in a statement.

Globe and Mail today has a nice summary of the various energy storage initiatives going on in Ontario — from conventional pumped storage to Temporal’s flywheels and advanced compressed-air energy storage.

Lady Gaga tweets are not enough… movie/rock stars should unite for climate awareness, action

Back in the mid-1980s dozens of high-profile music artists from the United Kingdom, United States and Canada got together in their respective countries to raise awareness and stimulate discussion of famine in Ethiopia.

Bono, David Bowie and Sting helped lead Band Aid, the U.K. supergroup that created the song Do They Know It’s Christmas? This was followed by USA for Africa’s We Are The World, which included Michael Jackson, Bruce Springsteen and Bob Dylan.

Canada’s contribution was Northern Lights’ Tears Are Not Enough, featuring heavyweights Bryan Adams, Neil Young, Anne Murray and Geddy Lee.

In all, the three songs resulted in the sale of more than 35 million copies worldwide and shined a bright light on an issue that had received little attention by the mainstream media, politicians and the general public.

I couldn’t help but recall the impact of these songs, and the phenomenon of celebrity influence, while listening earlier this week to Stanford University professor Mark Jacobson, who spoke at an event at the University of Toronto co-hosted by several community groups, including the Citizen’s Climate Lobby and Post Carbon Toronto.

I’ll make the link between star power and Jacobson later in this column, but first some background on the good professor.

Jacobson is a bit of a rock star himself in academic circles, at least when it comes to another problem that’s putting millions – potentially billions – of lives at risk. He has spent his career trying to understand the global impacts of air pollution and climate change, as well as how to quickly and responsibly transition from our dependence on fossil fuels to a world powered by renewable energy.

“Air pollution alone kills 2.5 to 3 million people at least a year worldwide,” he told those gathered to attend his Toronto lecture. He then rattled off a list of other problems associated with fossil fuels—rising global temperature and sea level, record Arctic ice loss, more frequent extreme weather events, and volatile energy prices, to name a few.

“These are drastic problems that require drastic solutions, and we think they need to be addressed immediately. We can’t wait 20 or 30 years, which is why we’ve really got to focus on technologies that exist today, that can be implemented for the most part right away, and that can be implemented at large scale.”

Jacobson caught people’s attention three years ago with his co-authored article A Plan To Power 100 Percent of the Planet With Renewables, which was the cover story for a 2009 issue of Scientific American.

Many roll their eyes at the suggestion that renewables can do it all for us, but one by one Jacobson’s article dispelled many myths about green power and convincingly argued that wind, water and sun could do the heavy lifting if we had the collective will power to make it happen.

It analyzed the impacts of each type of “clean” energy source independently, including land and water footprint, the materials required to make it, how much pollution would be created during its full lifecycle, and overall contribution to global warming.

Wind turbines, various forms of solar technology, hydropower and geothermal plants, and to a lesser extent wave and tidal energy, got top marks. Nuclear, coal with carbon capture and storage, natural gas and biomass didn’t make the cut.

In the area of transportation, he favoured electric or hydrogen-powered vehicles over those that used compressed natural gas or biofuels such as ethanol.

“Why not natural gas?” he said last week. “Because it releases at least 50 to 70 times more carbon and air pollution than wind energy per kilowatt-hour generated… It’s a bridge fuel to nowhere.”

Jacobson has calculated that a world where all industry and transportation is powered by renewables would require installation of 3.8 million wind turbines, 1.7 billion residential and commercial rooftop solar systems, about 90,000 solar plants each 300 megawatts in size, 5,350 geothermal plants 100 megawatts in size, and about 1.5 million wave and tidal devices.

It seems like a lot, but it’s all relative. Consider the estimated 20 to 30 million abandoned oil and gas wells worldwide, or the many millions of smokestacks that dot our city and urban landscapes. Considers that the planet is wrapped in a mesh of more than two million kilometres of pipeline infrastructure, enough to stretch to the moon and back nearly three times.

His renewables plan, he pointed out, would take up less than 1 per cent of land space on the planet.

Now comes the star power. Jacobson has teamed up with the greenest, most powerful ally one could imagine: the Incredible Hulk. Well, actually actor Mark Ruffalo, who played the Hulk in The Avengers movie.

They’re leading an initiative called The Solutions Project, which is trying to bring together high profile scientists, business people, investors, movie makers and Hollywood stars in an effort to drive home the message that 100-per cent renewable energy is not only doable, but should be done.

Their first effort, to be announced shortly, will be to develop a comprehensive green plan for New York State, followed by other states and eventually other countries.

Actors Leonardo DiCaprio and Scarlett Johansson are lending their star power to the cause, along with documentary movie director Josh Fox, celebrity entrepreneur Elon Musk, and philanthropist Eileen Rockefeller.

Jacobson and Ruffalo, who co-authored an article for Huffington Post that appeared in June, said their goal is to “inspire millions to take part in an energy revolution.”

“Today, with social media and the reach of pop culture, we can educate people and achieve what was unthinkable five years ago,” they wrote. “It is up to us to grab hold of our potential and change our world for the better.”

Individual tweets from Lady Gaga and Justin Bieber are not going to change things. Having celebrities join forces with scientists and policymakers against a global threat like climate change, as they did for African famine in the mid-80s, just might.

For this reason, Jacobson is on the right track.

Tyler Hamilton, author of Mad Like Tesla, writes weekly about green energy and clean technologies.